Publication (UFCH JH): Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template

The inherent properties of a single atomic carbon layer in graphene offer opportunities for the creation of catalytically active centers tailored on a molecular level on a support with high thermal stability and very high specific surface area. We demonstrate that organization of the two-dimensional system of the carbon layer into three-dimensional (3D) graphene-like catalytic materials with the connectivity of a pore network providing good accessibility to the active centers allows the preparation of catalytic materials that exploit the properties of graphene. In this study, 3D graphene-like microporous carbons, denoted as β-carbon and Y-carbon, were synthesized by nanocasting of beta (*BEA) and faujasite (FAU) zeolite templates. Structural analyses show that the materials are characterized by 3D-assembled and highly stable single-atom graphene layers that form an open porous system resembling the regular channel system of the zeolites with a specific surface area comparable to the surface area of graphene. The materials effectively catalyze the hydrogenation of alkenes, alkynes, and cycloalkenes into the corresponding alkanes and cycloalkanes. The materials facilitate catalytic intramolecular rearrangements, including the selective isomerization of double bonds and branching of linear chains, as well as stereoselective isomerization of unsaturated hydrocarbons.

P. Sazama, J. Pastvova, C. Rizescu, A. Tirsoaga, V.I. Parvulescu, H. Garcia, L. Kobera, J. Seidel, J. Rathouský, P. Klein, I. Jirka, J. Moravková, V. Blechta, Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template, ACS Catalysis, 8 (2018) 1779-1789. https://pubs.acs.org/doi/pdf/10.1021/acscatal.7b04086.

Back to List